책 소개
요약
다양한 분야에서 활용되는 추천 시스템을 이해하는 데 필요한 통계 기법을 소개한다. 오래전부터 활용해 오고 있는 전통적인 기법부터 최근 새롭게 주목받고 있는 기법까지 다양한 추천 문제에 적합한 해법을 설계하고 구현하기 위해 필요한 여러 가지 기법을 실제 예제를 통해 살펴본다. 개념을 이해하고 적용해 볼 수 있는 간단한 문제뿐만 아니라 연관 항목 추천, 다목적 최적화 등 고급 주제까지 폭넓게 다룬다. 또한 항목과 사용자 분류, 특성 기반 등 분류 기법과 추천 문제를 생각할 때 필연적으로 따라오는 탐색-이용 딜레마부터 설계한 추천 시스템을 평가하는 방법까지 필요한 추천 시스템을 구현하기 위해 필요한 내용을 구체적으로 설명한다.
이 책의 구성
1부에서는 추천 시스템 문제를 해결하기 어려운 이유와 해결에 사용하는 주요 개념, 필요한 배경지식 등을 소개한다. 2장에서는 과거 추천 시스템을 개발할 때 사용했던 전통적인 방법을 짚어본다. 사용자와 항목에 관한 정보를 특성 벡터로 사용해서 유사도 함수, 표준 지도 학습, 협력 필터링을 통해 사용자-항목 페어 점수를 산정한다. 전통적인 기법에서는 보통 추천 시스템에서 나타나는 탐색-이용 딜레마를 무시한다. 3장에서는 이 문제가 왜 중요한지 살펴보고 이후 장에서 문제를 해결하기 위해 사용하는 주요 개념을 소개한다. 4장에서는 기술적 해결책을 다루기에 앞서 다양한 추천 알고리듬의 성능을 평가할 때 사용할 수 있는 여러 기법을 다룬다.
2부에서는 흔히 발생하는 문제의 해결 방법을 자세히 다룬다. 5장에서는 다양한 문제 상황을 소개하고 시스템 아키텍처 예시를 제공하며, 이어지는 6, 7, 8장에서는 일반적으로 나타날 수 있는 문제 상황 한 가지씩 다룬다. 6장에서는 최고-인기 항목 추천으로 발생할 수 있는 문제의 해결책을 알아보는데 특히 탐색-이용 측면에 집중한다. 7장에서는 특성-기반 회귀를 통한 맞춤형 추천을 다루면서 최신 사용자-항목 상호작용 데이터를 활용해서 좋은 솔루션으로 빠르게 발전할 수 있게 모델을 지속해서 업데이트하는 방법을 집중적으로 다룬다. 8장에서는 7장에서 소개한 기법을 특성-기반 회귀에서 요인 모델(행렬 분해)로 확장하게 되고, 동시에 요인 모델에서 나타나는 콜드-스타트 문제에 대한 자연스러운 해결책을 알아본다.
3부에서는 고급 주제 3가지를 다룬다. 9장에서는 잠재 디리클레 할당, LDA 주제 모델 사용하는 수정 행렬 분해 모델을 가지고 항목과 사용자 집단에서 나타나는 주제를 동시에 식별하는 분해 모델을 다양한 주제로 소개한다. 10장에서는 추천된 항목이 사용자와 밀접하게 관련돼야 할 뿐만 아니라 문맥과도 관련성을 가져야 할 때(예: 사용자가 현재 읽고 있는 뉴스 기사와 관련된 항목을 추천하는 경우) 발생하는 문맥-의존 추천 문제를 살펴본다. 11장에서는 수익과 같이 하나의 목표를 최대로 늘릴 때 다른 목표의 손실이 제한된(예: 클릭 수 감소가 5% 이하) 경우인 제한된 최적화 접근법 기반 다-목적 최적화를 위한 기본적인 프레임워크를 다룬다.
목차
목차
- 1부. 소개
- 1장. 소개
- 2장. 전통적 기법
- 3장. 추천 문제를 위한 탐색-이용
- 4장. 평가 방법
- 2부. 일반적인 문제 상황
- 5장. 문제 구성과 시스템 설계
- 6장. 최고 인기 항목 추천
- 7장. 특성-기반 회귀를 통한 개인화
- 8장. 요인 모델을 통한 개인화
- 9장. 잠재 디리클레 할당을 통한 요인 분해
- 10장. 정황-의존 추천
- 11장. 다목적 최적화